|新一代信息技术 信息基础设施建设 互联网+ 大数据 人工智能 高端信息技术核心产业
|高端制造 机器人 智能制造 新材料
|生物产业 生物医药 生物农业 生物技术
|绿色低碳 清洁能源汽车 环保产业 高效节能产业 生态修复 资源循环利用
|数字创意 数创装备 内容创新 设计创新
|产业资讯
|地方亮点及地方发改委动态
|独家内容
|杂志订阅
✍️ 投稿
您的位置:首页 > 动态新闻
AI看病遇上真人会“掉链子”?
2026-02-11 13:02
来源:科技日报
字体: [   ]
 当大语言模型在医师资格考试中都能取得高分时,人们曾期待它能成为贴身的“AI健康助手”。然而《自然·医学》发表的一项在英国展开的研究表明,这些实验室里的“优等生”在面对真实用户时,表现却有可能意外“掉链子”——它们协助普通人作健康决策的效果,并未超越互联网搜索引擎。这项发现为当前火热的AI医疗应用,敲响了一记科学的警钟:人们会不会高估了当前大语言模型辅助普通人作健康决策的能力?

  当前全球医疗体系正尝试将大语言模型打造为公众的“第一道健康防线”,帮助人们在就诊前进行自我评估与管理。然而,该研究揭示了一个关键落差:在标准测试中表现优异的AI模型,一旦面对真实场景中的普通人,其表现可能大打折扣。

  牛津互联网研究所科学家设计了一个贴近生活的实验:邀请近1300名英国参与者,模拟应对感冒、贫血、胆结石等十种常见健康场景,并决定该采取何种行动——是拨打急救电话,还是预约家庭医生。参与者被随机分配使用三种主流大语言模型(GPT-4o、Llama3或Command R+)之一,或使用互联网搜索引擎作为对照。

  结果出现了有趣的“人机鸿沟”:当不用人类受试者进行测试时,AI表现非常出色,平均能识别94.9%的疾病,并在超过半数情况下给出恰当建议。但当普通人使用相同模型时,疾病识别率骤降至不足35%,行动建议准确率也低于45%,甚至未显著优于互联网搜索引擎。

  科学家进一步分析对话记录,发现了两组典型的“沟通盲区”:普通人往往难以准确、完整地描述症状,而AI偶尔也会生成看似合理实则具有误导性的回应。这种双向的信息偏差,让原本在测试中表现优秀的模型在实际应用中打了折扣。

  这也表明,当前的大语言模型若直接应用于公众健康咨询仍需谨慎,因为在真实的人机互动中,存在大量实验室测试无法预测的复杂性。AI医疗助手的发展不仅需要技术迭代,更需要深入理解:当健康遇到焦虑,当专业术语遇到日常表达时,人与机器该如何更好地“对话”。(记者 张梦然)

  本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有。如因无法联系到作者侵犯到您的权益,请与本网站联系,我们将采取适当措施。

关注微信公众号:

官方账号直达 | 关于我们 | 联系我们 | 招聘 | 广告刊例 | 版权声明

地址(Address):北京市西城区广内大街315号信息大厦B座8-13层(8-13 Floor, IT Center B Block, No.315 GuangNei Street, Xicheng District, Beijing, China)

邮编:100053 传真:010-63691514 Post Code:100053 Fax:010-63691514

Copyright 中国战略新兴产业网 京ICP备09051002号-3 技术支持:wicep