|新一代信息技术 信息基础设施建设 互联网+ 大数据 人工智能 高端信息技术核心产业
|高端制造 机器人 智能制造 新材料
|生物产业 生物医药 生物农业 生物技术
|绿色低碳 清洁能源汽车 环保产业 高效节能产业 生态修复 资源循环利用
|数字创意 数创装备 内容创新 设计创新
|产业资讯
|地方亮点及地方发改委动态
|独家内容
|杂志订阅
✍️ 投稿
您的位置:首页 > 生物产业 > 生物农业
人工分子能模仿自然光合作用 为太阳能转化为碳中和燃料开辟新路径
2025-08-27 15:08
来源:科技日报
字体: [   ]
    科技日报北京8月25日电(记者张梦然)瑞士巴塞尔大学研究团队在人工光合作用领域取得重要进展:他们开发出一种新型人工分子,能够模仿植物自然的光合作用机制,在光照条件下同时储存两个正电荷和两个负电荷。这一成果为未来将太阳能转化为碳中和燃料提供了新的可能性。相关论文发表于最新的《自然·化学》杂志。
  

 

  

   

    在自然界中,植物通过光合作用利用阳光的能量,将二氧化碳和水转化为富含能量的糖类分子。这些有机物不仅为植物自身提供能量,也成为整个食物链的基础。当动物或人类消耗这些碳水化合物,将其“燃烧”以获取能量时,会释放二氧化碳,从而形成一个闭合的碳循环。科学家正试图模仿这一过程,利用阳光合成氢气、甲醇或汽油等高能燃料,这类“太阳能燃料”在使用过程中释放的二氧化碳等于其生产时所吸收的量,因此可实现碳中和,是未来清洁能源的重要方向。

  一种具有特殊结构的分子,是此次实现人工光合作用的关键一步。该分子由5个功能单元串联组成,每一部分承担特定任务。分子的一端包含两个可释放电子的单元,在失去电子后带正电;另一端有两个可接收电子的单元,获得电子后带负电;中间则是吸收光能、启动电子转移反应的核心结构。

  团队采用两步光照的方法实现四电荷的存储:第一道闪光激发分子,触发电子转移,产生一对正负电荷,并分别迁移到分子两端;随后第二道闪光再次引发相同反应,使分子最终携带两个正电荷和两个负电荷。这种分步激发机制使得该过程可以在较弱的光照条件下进行,接近自然阳光的强度,而此前类似研究往往依赖高强度激光,难以应用于实际环境。

  更重要的是,这些分离的电荷在分子中能够保持相对稳定状态,持续足够长时间,以便参与后续的化学反应,例如将水分解为氢气和氧气——这是生产太阳能燃料的关键步骤。

  这一分子成功实现了多电荷分离与储存这一核心功能。团队成员表示,他们已经识别并实现了整个拼图中的一个重要部分。

  这项研究深化了人们对人工光合作用中电子转移机制的理解,也为未来设计更高效、更接近自然系统的太阳能燃料转化技术奠定了基础。其成果能为可持续能源的发展开辟新路径,推动人类向绿色、碳中和的能源目标迈进。

 

本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有。如因无法联系到作者侵犯到您的权益,请与本网站联系,我们将采取适当措施。 

关注微信公众号:

官方账号直达 | 关于我们 | 联系我们 | 招聘 | 广告刊例 | 版权声明

地址(Address):北京市西城区广内大街315号信息大厦B座8-13层(8-13 Floor, IT Center B Block, No.315 GuangNei Street, Xicheng District, Beijing, China)

邮编:100053 传真:010-63691514 Post Code:100053 Fax:010-63691514

Copyright 中国战略新兴产业网 京ICP备09051002号-3 技术支持:wicep